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Abstract. The borderline case of Dyson’s hierarchical model where a first-order transition 
is known rigorously to occur is investigated numerically. The susceptibility is found to 
behave as x -exp[a(@,-P)-’] as @ + & -  and infinite for P > P c .  The spontaneous 
magnetisation and correlation functions are also investigated. In terms of renormalisation 
group theory, the essentially singular behaviour results from the relevant operator becom- 
ing marginal in the borderline case. 

1. Introduction and summary 

The one-dimensional Ising model with long-range interaction whose potential falls off 
where r is the distance between two interacting spins has a phase transition 

for 0 < U < 1 and no phase transition for U > 1 (Dyson 1969). At the borderline U = 1, 
there is no rigorous proof concerning the existence of a phase transition. Thouless 
(1969), however, has argued that the phase transition, if it exists, should be of first 
order; that is, a jump discontinuity in the spontaneous magnetisation at a finite critical 
temperature T,. This suggestion was brought out in an approximate renormalisation 
group calculation by Anderson and Yuval (1971) who also concluded that the free 
energy has an essential singularity at T,. A similar approach by Kosterlitz (1976) 
further indicated that the zero-field susceptibility ,y has an essential singularity of the 
form 

like ,.-(lC‘J) 

,y - exp[a (T  - T,)-1’2] a s T + T , + .  (1.1) 
Our aim here is to investigate the borderline hierarchical model (HM), which is 

known rigorously to undergo a first-order phase transition (Dyson 1971). This model, 
for a system of 2N Ising spins, is defined in general by the Hamiltonian 

2 N - v  N 

% N = -  p = l  1 2-2pb, r = l  1 Si,r-HSN,l 

for (r - 1)2’+ 1 d i S r2, and So,i = *la  
When 6, = 2(1-u’p the HM immitates the power law r-(l+u) Ising chain. The 

borderline case referred to above and with which we will be concerned in this paper is 
for b, = In p .  
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In the following sections we use recursion relations for the partition function (Kim 
and Thompson 1977) and correlation functions, to calculate the high-temperature 
susceptibility, the spontaneous magnetisation, and correlations for various values of 

Numerically we find that the susceptibility has an essential singularity of the form 
p = (kBT)-l. 

x - e x p I a ~ ~ - ~ ) - ' I  as P + Pc- (1.4) 

and is infinite for all p > Pc = 1.7 1155 * 0.0001. This is to be compared with (1.1). We 
also obtain spontaneous magnetisation curves which are unfortunately not sufficiently 
accurate for p near pc to do better than the estimate moc =0*5*0.15 for the 
magnitude of the jump discontinuity in the spontaneous magnetisation at Pc. This is to 
be compared with Dyson's (1971) rigorous lower bound of (1 +&)-' - - 0.30 and the 
Anderson and Yuval (1971) computed value of 0.89 for the borderline Ising chain. 
The correlation function C(p)  between two spins coupled at the pth level of the 
hierarchy is found to decay as 

In order to understand the occurrence of essential singularities within the frame- 
work of renormalisation group theory, an argument is presented in the final section 
showing that near a fixed point of the renormalisation group transformation (RGT) for 
a borderline situation, the first relevant parameter of the RGT, corresponding to 
maximum eigenvalue unity of the linearised transformation, deviates linearly rather 
than exponentially from its fixed point value as the RGT evolves. d e  show that this 
linear behaviour results in essential singularities of the form (1.4). Special features of 
the borderline HM combined with the argument presented in this section are consistent 
with a first-order transition. 

2. Susceptibility and order parameter 

To determine the susceptibility x for the HM (1.2) we consider the moment generating 
function for the mean magnetisation defined by 

Trv(h) = (exP("h ) )N (2.1) 
where 

is the magnetisation per spin and the average in (2.1) is taken with respect to the 
zero-field (H = 0) Hamiltonian (1.2). Alternatively, in terms of the partition function 
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Using the recursion relation for the partition function (Kim and Thompson 1977) 
m 

e-x2[QN-l(P, h + 2(Pb~)”’2-~X)]~  dx (2.5) i, QN(P,  h)= v-’I2 

and approximating TN(h) by a polynomial in h of order 2M, i.e. 
M 

k = l  
TN(h)= 1 + 1 Ak,~(P)h’’/(2k)! (2.6) 

the coefficients A~ ,N(P)  can be readily generated on a computer using equations (2.9) 
and (2.5) for successive values of N. By definition, when p <pC, 

(2.7) 

where 

XN (P ) = 2NA I .N (P (2.8) 
so that the suceptibility is obtained directly by extrapolating the {A sequence. 
As a practical procedure, convergence can be accelerated by noting that for 
sufficiently large N 

T N ( ~ )  exP(A I , N  (P)h2/2). 
Using (2.9), (2.4) and (2.5) we then have 

XL:i =Xk1 - @ b ~ + 1 2 - ~  
from which it follows that 

m 

X - l z X i l  - p 2 - N  1 2-‘b~+l+k =Xkl -2p2-N h ( N +  I), (2.10) 
k = O  

where in the last step we have used the borderline value bp = In p. 
The values of x@) obtained using the above prescription with M = 40 are given in 

table 1 for a range of p near criticality. In figure 1 we have plotted the inverse of log2X 
against p from which we conclude that 

(log*X)-l“A(Pc-P) a s p + & -  (2.11) 

Table 1. Logarithm of the high-temperature susceptibility data near the critical tempera- 
ture. 

1.60 
1.61 
1.62 
1.63 
1.64 
1.65 
1.66 
1.67 
1.68 
1.69 

9.269 1.700 44.078 
9.810 1.702 52.150 

10.440 1.704 64.808 
11.192 1.706 87.343 
12.109 1.708 137.269 
13.268 1.710 315.181 
14.802 
16.968 
20.359 
26.700 



378 D Kim and C J Thompson 

1705 1710 1 01 
1703 

0 '., 
Figure 1. (log2 ,y)-' against p near 8, from table 1 .  The broken line is for visual aid. 

with 
pc= 1 ~ 7 1 1 5 5 i 0 ~ 0 0 0 1  and A=2.0*0.2.  (2.12) 

In other words the high-temperature susceptibility has an essential singularity of the 
form 

x@)- exp[a(Pc- as P + Pc- (2.13) 

with a = 0.35. 
to approach finite limits as N + 00. In fact, 

following Griffiths (1966) we can define a sequence of order parameters m2k though 
When p > pc we expect the 

(2.14) 

With small numerical uncertainty we find that for all k the m2k are the .same as the 
order parameter mo defined by 

(2.15) 

For example at p = 1.8 we find that m2k = m o = 0 ~ 8 1 2 2 ~ 0 ~ 0 0 0 1  for k = 1 ,2 , .  . . . 
(The procedure used to obtain mo is discussed in the following section.) 

In figure 2 we have shown the 'spontaneous magnetisation curve' m2k for a range 
of p near pc obtained by extrapolating the sequences for several k. 

Pc 172 1 76 1 80 
13 

Figore 2. Spontaneous magnetisation mo against 6. 
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Unfortunately, the A k , N  sequences converge very slowly for p close to pc and we 
could only roughly estimate that the magnitude of the jump in the spontaneous 
magnetisation at pc is approximately mOc = 0.5 & 0.15. There is little doubt that the 
critical value is approached with infinite slope as p + pc + but with the numerical 
uncertainty we are unable to reliably estimate the nature of the singularity. 

3. Correlations 

Following Dyson (1969), we define the correlation function CN(P) between two spins 
coupled at the pth level of the hierarchy by 

To obtain exact recursion relations we introduce 

c N , p  (y ) = (sO,lSO,2p exp(mNY ) ) N  (3.2) 

where mN = 2-NsN,1 as before. Following the same line of argument used to derive the 
recursion relation (2.5) for the partition function (Kim and Thompson 1977) we 
obtain, for N > p ,  

1/2 -1 cN,p(2Y)= [QN-I(P, o)] ' [ON(P,  o)(&v) 1 

where b N  =In N and T N ( x )  is defined by (2.1) or (2.4). It follows that once cp,p(y) is 
known, &p(y) for N > p  can be readily generated by successive application of (3.3), 
using a similar procedure to that described in the previous section for TN(y). Also 
since C N ( p )  = cN,p(0), the limiting correlation function 

(3.4) 

can then be obtained by extrapolating the CN(P) sequences. 
To determine the starting point cpp,p(y) for (3.3) we observe that from (2.1) 

-2p+1 
= (tmi-1 exp(mPy ) ) p  + 2 (Sp-l,lSp-l,z exp(m,y)), 

2 p  Z P - 1  

= h i - 1  exp(m,y ) > p  +2-"+' i = l  C . C (So,iSo,j exp(m,y)),. (3.5) , = 2"-'+ 1 

Due to the hierarchical structureof the model each term in the sum appearing in (3.5) 
is equal to cp,p(y) so that on re-arranging we have 
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The second term in (3.6) can be expressed in term of TP-1 as 

( 4 1  exp(m,y ))P 

1/2 -1 
= [Qp--l(B1 O)12[QP(P9 0M.rrSb) 1 

where b, = In p .  Therefore, C?p,p(y) is determined from Tp-l(y)  and Tp(y) which in 
turn are determined recursively from (2.4) and (2.5). 

Numerically, the CN(p) sequences converge rapidly for fixed p and increasing N. 
In practice Cp+30(p) were sufficient to obtain six digit accuracy for C ( p )  for values of p 
up to 400. 

For high temperatures (p < pC) the C ( p )  data give 

~ ( p )  - 2-2(p--Lo) In p asp+oo (3.8) 

Lo(p)2:10g2X(P)+C-A-1(pc-P)-1 a s @ + & -  (3.9) 

where 

with A =2.0*0.2 as before and C =  1.10. At 
with increasing p ,  with data indicating, as shown in figure 3, that 

C ( p ) -  (In p1-I 

-pC, C ( p )  decreases very slowly 

(3.10) at p = pc as p +a. 

3 5 7 9 
log, P 

Figure 3. C(p)- l  against l o g z p  at p = 1.71155. 

For p >pc, C ( p ) + m &  defined by (2.15), as p +a. Typical behaviour of C ( p )  is 
shown in figure 4. We note here that the low-temperature susceptibility is given by 

m 

p = l  
x = 1+ 2P-'(C(p)-m3 (3.11) 

so that for x to exist for p >pc,  C ( p ) - m ;  must decrease faster than 2-' as p + W .  

Numerical data for C ( p ) ,  however, indicate that this is not the case and hence we 
conclude that x is infinite for p >pc. 
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Figure 4. C ( p )  against p at 6 = 1.80. 

4. Renormalisation group and essential singularities 

When bp in equation (1.2) is given by 

(4.1) b, = 2(1--a)P 

an exact renormalisation group transformation can be achieved by simply rescaling 
the spin distribution function or the partition function (Kim and Thompson 1977). 
Detailed critical behaviour of the model, as discussed in Kim and Thompson (1977), is 
essentially determined by the largest eigenvalue A1 of the RGT linearised around the 
appropriate physical fixed point. In particular we found that as ~+l- ,  A1 
approached the marginal value of unity from above. Although there is, strictly 
speaking, no phase transition when U is set equal to unity in (4.1) one can obtain a 
situation where there is a phase transition by considering 

1) (4.2) bp = (1 -U)-1(2(1-u)p - 

and taking the limit U + 1-, to obtain bp = p In 2 and with A1 still equal to its marginal 
value of unity. Similarly, by considering 

In P, (4.3) bp = 2(1--a)P 

which is more difficult to analyse than (4.1) or (4.2), we still expect that in the 
borderline limit U -* 1- the appropriate maximum eigenvalue becomes marginal. We 
claim that in general, when A1 = 1, one can expect essential singularities. 

To see this, consider a general renormalisation group equation 

TIC1 = R I  O T A Y )  (4.4) 

where RI is a non-linear RGT that reduces the number of degrees of freedom by a 
factor of two and, in the present instance, .rr~(y) is either a spin distribution function or 
a scaled partition function. At criticality p = pc, n ~ ( y ) - *  .rr*(y) as 1 +coy where T* 

satisfies 

.rr*(y) = R, 0 .rr*(y). (4.5) 
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Now let 
m 

rl(y)= r*(y)+ 1 ak,l(t)d'k(y); t = ( P c  - P Y P C  (4.6) 
k = l  

where & ( Y )  are the eigenfunctions of the linearised operator [i (assumed to be 
compact) of R,, 

L o  (Lk(Y)=Ak$k(y); A i = l > A 2 > A , > . .  . .  (4.7) 
For sufficiently large I and small t the 'irrelevant operators' J/k, k > 1 in (4.6) are 

unimportant so that only the k = 1 terms need to be considered. On substituting (4.6) 
into (4.4) and assuming that the non-linear contribution is quadratic (which is 
certainly the case in (2.5) for example) the RGT (4.4), in terms of the al,l(t), becomes 

al,l+l(t)= al,l(t)+A(al,l(f))2+ higher order in ul,l(f). (4.8) 
Here A is some constant and from analyticity for finite 1, al,l(t) is small and pro- 
portional to t for small f .  Iterating (4.8) n times we then have 

al,l+n(t)= al,l(t)(l+ nAadt))= a d t > ( l -  nAadt))-' (4.9) 

so long as nAal,l(t)<< 1. In particular if we set al,l(f)= Bt we have 

al,,+n(t)=Bt(l - nct1-l; ncf << 1.  (4.10) 

For comparison, when AI > 1, which is the usual situation, one has (Wegner 1976) 

al,/+n = al,l(f)A?=BtA; (4.11) 

so that al,l(t) deviates exponentially from its fixed point value zero, as I increases, 
whereas when A1 = 1 it deviates only linearly. This linear behaviour is in fact observed 
numerically for the borderline HM, as shown in figure 5. 

We can now proceed in the usual way to deduce singular behaviour from (4.10). 
Firstly, for the correlation length 6, since each step of the RGT reduces the number of 
degrees of freedom by a factor of two, we have 

f({al,l(t))> = 2n6({alJ+n(t)H, 

3-  

2 -  
n 

x 

- 3 -  

Figure 5. Behaviour of Ak.l(p) defined in (2.6) relative to Ak,l(Pc) near p, for k = 1 .  
Upper data are for p = 1,7116 and lower data are for p = 1.7115 with p, chosen as 
p,= 1.71155. 
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that is, from (4.10) 

( ( t )  = 2"5(t(1 -net)-'); nct << 1. 

Defining 

f(x) = In ~ ( x - ' )  

we then have, from (4.12), that 

f ( x ) =  n In 2 + f ( x  - nc) 

for any n so long as nc << x, so that for sufficiently large x 

(4.12) 

(4.13) 

(4.14) 

and hence from (4.13) 
t ( t )  - 2(=')-l as t + O+. (4.16) 

For the HM, x(t)-(((t))" (Kim and Thompson 1977) so that for the borderline 
case one would expect the form (1.4) obtained numerically for x. In the normal HM 
range O < u <  1 where (4.11) rather than (4.10) is valid, (4.12) is replaced by (n = 1)  

5( t )  = 25(Alt) (4.17) 

so that assuming power law singularities 5 - t-" and x - t-' one has 

Y = (log2 and y = u(log2 AI)-'. (4.18) 

The corresponding expression to (4.17) for the spontaneous magnetisation mo, when 
O<u<l is 

mo(-t) = 2(0-1)'2mO(-A1f) (4.19) 

so that if mo(t)-itlP as t + O - ,  

@ =$(1 -u)(log2 AI)-'. (4.20) 

Assuming that (4.19) remains valid as U + 1-, with (4.10) replacing (4.11), one might 
expect that, granted the obvious difference between cases (4.1), (4.2) and (4.3), the 
borderline case b, = In p has spontaneous magnetisation mo(t)  satisfying to first 
approximation, the functional equation 

mo(ItI) = mo(ItI(1- ncItI)-'); ncltlcc 1.  (4.21) 

Granted (4.21), and fixing E sufficiently small, choose n (large) and It1 (small) such that 

ncltl= E ( I  + E ) - ' .  (4.22) 

Equation (4.21) then becomes 

mo(ltl)= m d ( 1  +E)ltl). (4.23) 
Expanding the right-hand side of (4.23) in powers of Elt l  and allowing E -* O+ one then 
obtains 

tmb(t)  = 0 ast+O-. (4.24) 

It follows immediately that if mo(-c)>O with O<c<< 1 then mo(O-)>O or in other 
words mo has a jump discontinuity. 
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The above discussion is of course incomplete and non-rigorous but at least it is 
consistent with our numerical results and Dyson’s theorem (Dyson 1971) that the 
borderline HM has a first-order phase transition. In more general situations, where the 
usual RG result (4.11) breaks down due to the fact that 14, = 1, it is most likely that 
essential singularities replace the conventional algebraic singularities though not 
necessarily of the form (4.16) which relies on the special form (4.8) of the non-linear 
RGT. The coincident first-order transition result above relies even more (equation 
(4.19)) on the HM structure of the RGT. 
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